针对便携式设备中音频电路的设计指南

2014-01-27 11:00 来源:电子信息网 作者:蒲公英

在便携式产品设计中很容易遇到与音频相关的特殊问题,由于音频电路看似简单,规划设计时工程师通常不会在相对低频的音频电路(20Hz至20KHz)中花费太多时间。本文试图从最基本的音频电路设计入手,为工程设计人员提供一定的设计参考意见和方法。

最后开启音频电路

这个简单的原则可能最为重要,但却经常被系统设计者所忽略。功率放大器无法区分噪音、咔嗒声和信号。如果过早地开启功放,它会不加区分地放大所有输入信号。便携式产品播放电路通常包含数字信号存储器、数模转换器(DAC)、功放、扬声器或耳机(图1)。存储器中的数字信号经过解码后发送到DAC进行转换,DAC的模拟输出通过电容交流耦合到功放的输入端,放大器必须能够提供足够的电流驱动低阻扬声器。如上所述,放大器使能后将放大进入其输入端的任何信号,包括有用信号、噪声、咔嗒或嘭嘭声。

如图2所示,扬声器放大器连接在8Ω扬声器和音频DAC之间。DAC输出与功放之间的交流耦合电容是必需的,以保证两个器件具有适当的输入和输出偏置电压。大多数音频放大器的输出端含有偏置电压,为了可靠传输音频信号需要将此偏置电压预先设置好。在开启功率放大器之前必须留出一定的时间间隔,以便建立适当的偏置电压。假如过早地开启功率放大器,DAC输出正处于爬升阶段的偏置电压对于放大器输入来说相当于一个衰减脉冲。该信号经过-放大器放大后进入扬声器,产生可闻的咔嗒声。

图2假定功率放大器已经开启,并在DAC开启之前已经建立输入偏置。DAC使能后,节点A的电压会爬升到如图所示的DAC输出偏置电压。当DAC的偏置电压爬升时,由耦合电容以及放大器的输入电阻构成的高通滤波器在节点B会产生一个毛刺,经过放大器后的输出信号等于输入信号之间的差值[(IN+)-(IN-)]乘以放大器的增益。

低频响应与输入时间常数

用于隔离DAC的偏置电压与功放输入端口的输入电容,与放大器的输入阻抗一起构成高通滤波器。可以考虑使用较大容量的电容以降低低频衰减,但由于功率放大器的输入偏置电压,增大了的输入时间常数可能导致输出砰砰声。假如放大器在输入稳定之前开启,就会导致砰砰声。功率放大器输入端的简化模型中以RIN表示输入阻抗,前置放大器的同相端连接到内部基准电压,这个输入结构是单电源功率放大器的典型结构。

1

图1:典型的音频子系统。

2

图2:大尺寸耦合电容以及输入、输出偏置电压共同导致扬声器子系统的咔嗒声。

当放大器的/SHDN拉高之后,经过一个固定延时后放大器被激活。该延时称为开启时间(tON),在器件手册的电特性部分有具体定义。图3所示是当/SHDN拉高并且输入电容为推荐值时,功率放大器输入、输出端的波形。可以看到,功率放大器的输入偏置电压在/SHDN拉高之后开始爬升,但输出级仍然关闭。输入偏置电压达到正常值的时间由电容CIN和放大器的输入电阻(RIN)决定,合理设置放大器的开启时间使其在输出级开启之前建立稳定的输入偏置电压。对于大多数功率放大器,开启时间是固定的(图3中,tON = 24ms)。

3

图3:选择适当输入耦合电容时,图2电路的输入、输出波形。

设置开启时间时,IC设计工程师必须考虑放大器的输入阻抗以及输入偏置电压和输入偏置电容,输入电容由应用工程师选择,以提供快速响应的时间常数并保证低频响应尽可能平坦为目标。图3的测试波形表明/SHDN引脚拉高后,输入偏置电压爬升到正常值,延迟tON并激活输出端。如果在此过程中,被激活的输出平稳开启,扬声器不会发出咔嗒声。

1 2 3 4 > 
放大器 音频电路

相关阅读

暂无数据

一周热门