引言
本世纪初,Veit用Einthoven 氏电流计首次从体表记录了人的妊娠子宫的电活动。1950 年,Steer 和Hertsch 将这一信号定义为体表子宫电信号(eletrohyst rogram, EHG)[1]。自此之后,人们开始了对体表子宫电信号的深入研究。开始的研究兴趣集中在体表子宫电信号是否具有意义,以及时域、频域的特点上。直至1993 年,法国Compiegne 大学研究组发表综述文章,认为EHG信号能够反映肌肉纤维兴奋的原始过程,提供有关子宫肌肉活动的辅助信息,是妊娠和分娩监护的有效手段[2]。从此,转入了对体表子宫电信号的应用研究,研究人员从不同的角度尝试将其应用于临床, 提出了早产检测、宫缩次数检测等多种设想。
在过去的几十年中,许多研究人员在体表子宫电信号的研究方面所作的大量的工作,以及取得的很多极有价值的研究成果。然而总的来说,对EHG信号的过去50年的研究还主要集中在实验研究、定性研究阶段,研究的目的在很大程度上是验证体表子宫电信号是否是子宫收缩的真实反映。此前我们曾研制了一套多导同步的体表子宫电数据采集系统,能以较高的采样率, 完成16 导联体表子宫电数据的同步采集,同时可以用Windows下的应用程序对采集到的数据进行实时或事后分析、处理和显示,为此领域的研究作出了贡献[3]。但近些年电子技术通信技术取得飞速发展,一大批高性能的新型器件应运而生,新兴的USB等通信技术逐渐占据走上电子产品的舞台。因此我们在深入研究、广泛借鉴国内外电子产品开发经验的基础上对原有系统作了重大改进。主要体现为以下几方面:(1)以性高价廉AduC847取代原有的8051单片机,充分改善智能系统整体的性能。(2)以新型的生物前置放大器代替原有的双运放放大器,使效果更佳。(3)精选AD7674、多路模拟开关ADG726、存储器ARM628128等新型的优良器件,使系统得到全面的升级。(4)将流行的USB通信技术融入系统,提高了系统的数据传输速率,为系统扩展提供了支持。(5)结合VC技术的新发展将用户界面改进得更加生动直观。
EHG信号的特点
子宫平滑肌的兴奋和收缩是EHG信号的表现和结果。在子宫收缩时,EHG信号表现为峰电活动较频繁的爆发波。爆发波的幅值随被试个体以及实验条件的不同差异较大,变化范围由100μv 到1.8mv。子宫电信号的频率较低,其主要频率成分集中在0~5Hz,且物种差异不大。随着产程的进展,子宫电爆发波表现为幅值升高,频率加快,每次爆发波的持续时间延长[6]。子宫电信号的主要频率成分可以分为F1 和F2 两部分(如图1 所示)[2]。F1 代表了爆发波出现的频率。在产妇分娩时,爆发波出现的最高频率是每10min3 次( F1max = 0.005Hz)。F2 又可以清楚地分为两个频率段:其一是频率为0.014~0.033Hz 的慢波,一般文献认为F1 和慢波所在频率段已经与机械伪迹混叠,不具有临床意义。其二是频率为0.1~3Hz 的快波,能够真实地代表子宫肌肉活动,无论在妊娠还是在分娩时都可以观测到,是我们所希望不失真采集到的频谱成分。
系统硬件部分设计
系统硬件框图如图2所示,检测原理是16导联EHG信号经电极耦合进入16导联前置放大器后,再经放大器放大,滤波网络滤波后进入模数转换器。单片机AduC847以200Hz的采样率在定时中断内读取模数转换器的输出,送入RAM中暂存,在定时中断外与笔记本电脑进行通讯,将RAM中存储的数据不断经串口送入笔记本电脑。笔记本电脑中的应用程序由串口接收单片机发送的数据,并对其进行数据处理和显示。