随着高数据率基础设施在全球范围的不断扩张,以及多媒体设备的日益普及,多功能手机像以语音为主的手机一样几乎一直处于使用状态,但需要依赖于电池的容量。试设想当前用户可以在各自设备上进行的所有功能操作,例如下载/共享/收听音乐、下载/共享照片、玩游戏以及通过互联网进行影视观赏和餐馆订位等等,而这些正逐渐成为一种全天候的生活方式,因此需要设备具备更长的运行时间来支持。
用户体验对终端用户而言十分重要,而且网络运营商和内容提供商同样依赖这些新的多媒体功能及其扩展业务进行创收,故电池寿命受限意味着赢收受限。
目前的功率转换效率已超过90%,效率的进一步提升对整体的影响将很小。因此,有必要采用新技术进行系统级能量管理。如果处理器能够根据实际需要调节频率,同时结合能根据频率来降低电压的功率管理技术,就可以显著降低能耗,相应延长了运行时间。
电压调节
电压调节和节能的概念可以通过数字系统的能耗公式来表述:
E={(CVDD2f)+(VDDILEAK)}t
这里动态项包括C(电路电容)、VDD(电源电压)和f(时钟频率);静态项由数字门电路的ILEAK(泄漏电流)决定。从该式可看出,为什么在数字电路中采用常用的节能技术可通过降低处理引擎的频率(f)和电压(VDD)以最终能减少能量消耗。动态电压调节(DVS)和自适应电压调节(AVS)是两种常用的电压调节技术。图1显示了DVS和AVS实现的节能情况。
什么是DVS 和 AVS?
DVS是一种开环方案,通过预特征削减或利用电压-频率查找表来调节电压和频率。这些电压必须足够高以维持所有器件和温度范围内的功能性。虽然这种开环方案可以节省相当可观的能量,但无法实现所有可能的能量节约。
AVS是一种闭环方案,在尽可能降低电源电压的同时仍能及时完成任务。DVS把电源电压调节到固定的预特征值,而忽略了进程、温度和电源的变化。AVS则在确定最佳电源电压时把所有这些因素都考虑在内,以确保能耗最小化。