可穿戴式生命体征监护设备的研制

2014-02-21 17:54 来源:电子信息网 作者:蒲公英


1.1主节点硬件设计

主控节点结构如图2所示。它通过串口与PC主机交互数据,通过无线模块与舱内子节点通信,同时管理和协调舱内各节点的工作时序和同步。其中,微处理器用TI公司超低功耗的MSP430F149,无线通信模块选用Chipcon公司的2.4GHz频段射频低功耗接口芯片CC2420,电源模块采用DC/DC电源变换模式。MSP430微控制器在16bitRISC核的基础上集成了RAM和闪存,同时集成了8路A/D转换模块、传输速度可编程的串口模块和一个灵活的时钟子系统,支持多种低功耗操作模式。CC2420芯片与IEEE802.15.4协议兼容,最大数据数率250Kbit/s,可编程控制输出功率,并支持错误校正和加密。MSP430可通过SPI接口和中断数字I/O线对CC2420进行控制,如图3所示。

3


1.2子节点硬件设计

传感器子节点的组成框图如图4所示,包含电源模块、心电与呼吸监测模块、血压监测模块、血氧饱和度与脉搏监测模块、体温监测模块、无线传输节点、微处理器模块、输入与LCD显示模块等8个子模块,主要执行生命体征参数的采集、放大、滤波和无线传输,无线传输前,子节点也进行实时分析、特征提取等信号预处理。

4


心电检测采用三电极胸部检测方法,选用具有高输入阻抗、低噪声、低漂移精密运算放大器AD620作为第一级放大器,并与呼吸检测电路共用。心电信号经过放大、滤波等处理后,一路进行A/D转换,用于心电波形显示;另一路信号送人一个中心频率为9~18Hz的低Q值带通滤波器,提取R波并抑制部分干扰,经波形变换后可获取心率信号。

呼吸检测选用阻抗法,为了降低电极接触阻抗对检测结果所产生的干扰,通常选择双电极阻抗法,用控制器MSP430集成的PWM产生两路相差半个周期的62.5kHz方波对呼吸信号进行调制,对调制信号进行放大、解调和滤波后可获取呼吸信号。

血压检测采用无创袖套间接方式,可同时检测收缩压(SP)、平均压(MP)、舒张压(DP)3个血压指标,其测量范围为0~250mmHg(0~33.33kPa)。

血氧饱和度检测采用指端脉搏光电检测法。根据朗伯一比尔定律(Lambert-BeerSlaw),单色光透过均匀溶液后的透射光强与溶液参数有关。还原血红蛋白与氧结合后,对某一波长色光的吸光系数将发生很大变化。因此,在入射光强度不变的情况下,透射光强度的变化反映了血氧饱和度的变化。在设计时,我们利用MSP430的时钟控制端口产生逻辑时序控制红光和红外光二极管工作,通过检测透射光强度实现对血氧饱和度的测量。体温测量采用美国DALLAS公司生产的高精度集成温度传感器DS1624,它具有分辨率高(可达0.03℃)、外围电路简单、输出直接为数字信号等特点。

两个微处理器模块选用两个MSP43OF149芯片,一个用于实现对各参数采集模块和LCD显示的控制;另一个用于无线通信模块的控制,并与芯片CC2420组成一个无线通信节点。

另外,为了减少设备的体积和功耗,舱内终端机采用单色超低工作电压LCD屏,实时显示心电、脉搏等生理参数波形。终端设计采用锂电池供电,工作电压为+3.3V。

< 1 2 3 4 5 6 > 
可穿戴设备 医疗设备

相关阅读

暂无数据

一周热门