《线性及开关电源的控制环路设计》之控制系统

2013-12-27 23:35 来源:电子信息网 作者:和静
增益余量及稳定条件

图4显示了被补偿转换器的另一个典型频率响应,重点显示了0dB交越点及相位余量。我们根据经验可知,构成转换器的元件在产生生命周期内会再现性能变化。这些变化可能是因正常的生产差异范围引起的(如电阻或电容遭受逐批次公差不同的影响)。转换器的环境工作条件也对元件有影响。在这些变量中,温度充当关键角色,影响被动或主动元件参数,如电容或电感等效串列电阻(ESR)、光耦电流传递比(CTR)或是双极晶体管的beta值。这些变量影响环路增益,使其上升或下降,具体则取决于受影响的参数。

1

图4:环路增益会显示出对温度等外部参数的敏感性。出现变化时,相位余量必须始终保持在安全限制范围内。

如果增益曲线出现变化,0dB交越频率将过渡至新的值,为转换器施加不同的带宽。在这些变化条件下转换器的稳定性会受到怎样的影响?如果新的交越频率出现在相位余量较少的点,瞬时响应性能可能下降,使过冲不再能被接受。因此,身为设计人员,你的责任就是确保这些差量(dispersion)在你接近-180°极限时不会突然增大增益。您需要充足的增益余量,其定义如下所示:

1

它对应于恰好为-180°或弧度的频率点(图3中为1MHz)。

图4描绘了由于所选择元件生产差异范围导致的±10dB典型增益变化。它带来了1.5kHz至30kHz的交越频率。在此区域,相位余量从70°变为45°,这些都是理论上的安全数字。最坏情况是什么?就是新的交越频率在总相位滞后180°处出现。这条件在1MHz时出来,表示有35dB的正增益变化。

不太可能有大增益

有利的是,当今电子电路中不太可能出现35dB的增益变化。以前,在变压器或伺服系统(servomechanism)采用真空管电路驱动的时候,上电序列期间的准备(warm-up)时间可能引起大的环路增益变化。因此,增益规定有必要排斥可能存在稳定性风险的第二个点。此总相位滞后达-180°的频率处的环路增益曲线上可见这增益余量,在图3中被标记为GM。在当今电子电路中,高于10dB的增益余量通常就足够了,除非您的环路增益对外部参数极为敏感。

增益漂移的另一个示例如图5所示。图中显示另一个被补偿的转换器在10kHz时出现80°的相位余量。根据前文的讨论,我们知道可能会出现增益变化,致使增益曲线上扬或下走。在我们的示例中,我们可以发现2kHz附近一个区域的相位余量小到只有18°。如果出现20至25dB的增益下降,你最后得到的控制系统就会出现相当危险的约2kHz的低相位余量。这就会导致振荡响应,很可能超出过冲规范。此类系统被认为是有条件稳定。有利的是,如前所述,25dB的增益变化并不常见,有这等增益余量的系统可被视为强健。然而,我看见过在一些设计案例中,最终使用者(您的客户)在规范中清晰标明不接受有条件的设计,要求在低于交越频率的所有点提供大于60°的相位余量。在这种情况下,就强制要求补偿转换器,使得无论什么工作条件下,低于交越频率时都不存在相位余量降低的区域。

1

图5:在此示例中,如果增益漂移至低于25dB,曲线就在相位余量仅为18°的频率点过0dB轴。如此的相位余量将受大的过问影响,提供振荡极大的响应。这就是有条件稳定的案例。

< 1 2 3 4 > 
开关电源 稳定性标准

相关阅读

暂无数据

一周热门